Enantiopure DAVA-Derivatives-Part III.¹ Synthesis of All 4 Stereoisomers of 2-Methyl-4-hydroxy-5aminopentanoic Acid (2-Me-4-OH-DAVA).

Claus Herdeis* and Karen Lütsch Institut für Pharmazie und Lebensmittelchemie der Universität 8700 Würzburg, Am Hubland,FRG

(Received in UK 23 November 1992)

Abstract: A stereoselective synthesis of the 4 stereoisomers of 2-methyl-4-hydroxy-5-amino-pentanoic acid namely 2R,4S-9a, 2S,4S-9b, ent-9a and ent-9b is presented, starting from the known lactones S-1 and R-1, which are readily available from L- and D-glutamic acid. Only ent-9b shows affinity for GABA_B-receptor sites.

The neutral amino acid 4-aminobutanoic acid (γ -aminobutyric acid, GABA) is an inhibitory neurotransmitter which plays an important role in the control of neuronal activity in the mammalian central nervous system.² The neurotransmitter functions of GABA are mediated by at least two distinct subtypes of receptors, GABA_A and GABA_B receptors. GABA_B receptors are characterized by their lack of affinity for GABA_A agonists (e.g. isoguvacine and muscimol) and by their specific affinity for and activation by R(-) baclofen.³ Understanding of the physiological and pharmacological role of GABA_B areceptor is facilitated by specific GABA_B antagonists. Recently a number of GABA_B antagonists like phaclofen⁴ I 2-OH-saclofen⁵ II and 3-aminopropyl-(diethoxymethyl)phosphinic acid⁶ III were synthesized and tested.

Recent data have shown that δ -aminovaleric acid (DAVA) is an antagonist of the central pharmacological actions of baclofen (Lioresal[®])⁷. On the other hand the introduction of hydroxy groups into different positions of the carbon backbone of DAVA shows dissimilar agonistic and antagonistic affinity profiles to GABA_B receptors^{1b}. Recently we have synthesized R(-)-and S(+)-4-OH-DAVA from D-and L-glutamic acid⁸.

R(-)-4-OH-DAVA (IV) has shown a moderately potent affinity for GABA_B receptor sites in rat brain and GABA_B antagonistic effects in guinea pig ileum preparation. The S-enantiomer did not affect GABA_B receptor binding in both preparations¹b.

To study stereostructure-activity relations and the influence of the lipophilicity of derivatives of IV on GABA_B receptor site, we started a synthetic program with the aim to introduce alkyl substituents in the 2-and (or) 3-position of IV in a stereoselective manner. The "lactone pathway"^{1a,8} with S-1 (R-1) as a starting material seemed to be best suited for this project; first, position 2 can be modified by enolate alkylation of 2 and second, position 3 via 1,4 conjugate addition of organo cuprates to the 3,4 dehydro derivative of 2. In this paper we describe the synthesis of 9a and 9b from S-glutamic acid. Ent-9a and ent-9b is provided from R-glutamic acid in the same way.

Enanticipure S-1⁹ was silvlated to S-2^{10a} which was methylated¹¹ to 3a in excellent diastereoselectivity (d.e. greater 98% was determined by GC for 4a on a Lipodex D column after desilylation of crude 3a). One crystallization of 3a from methanol furnished diastereopure material. On the other hand phenylselenenylation of the enolate of 3a provided 10 as a single diastereomer, which could be transformed to the olefin 11 by oxidation with hydrogen peroxide at room temperature^{10a}. Hydrogenation of **11** on Pd/C from the less hindered α -side gave 3b/a in a cis/trans ratio of 96:4, detected with GC on a crude mixture of 4b/a. After mesylation of 4a,b, 5a,b were reacted with sodium azide to 6a,b which were hydrogenated in the presence of di-t-butyl dicarbonate to the Boc-protected amino lactones 7a,b. Treatment of 7a,b with methanolic hydrogen chloride solution furnished 8a,b in an overall yield of 61% starting from 4a,b. Only minor amounts of 8a,b could be isolated, when 6a,b was hydrogenated in the presence of methanolic HCI solution. After column chromatography, 3,5-dimethyltetrahydrofurane-2-one was isolated as an oil. The ringopening of the unexpectedly stable aminolactone hydrochlorides 8 and the isolation of the amino acids 9 turned out to be more difficult than anticipated. Higher base concentrations than 1M KOH caused extensive epimerisation on position 3. This could be determined by ¹³C-NMR spectroscopy after relactonization of the amino acids in acidic media. This facile lactonization prohibited the isolation of the amino acids 9 as their hydrochlorides. Ultimately, after ringopening of the lactones 8 with 0.5M KOH at room temperature, the potassium salts of 9 were brought on a acidic ion exchange column (Dowex 50Wx2). The neutral amino acids were eluated with 0.5M NH4OH solution and freeze dried, Ent-9a/b were produced from R-glutamic acid according to the same reaction sequence. Interestingly only one stereoisomer namely ent-9b showed affinity on GABAB receptor sites¹². Receptor binding studies will be published elsewhere in due course.

a: TBDPSiCI, Imid., DMF; b: LDA, -78°C, MeI; c: TFA, H₂O, r.t.; d: MesCI, Et₃N; e: NaN₃,15-crown-5; f: H₂, Pd/C,Boc₂O; g: HCI/MeOH; h: OH⁻/D 50W2/NH₄OH; i: PhSeCI, LDA -78°C; j: H₂O₂,Py; k: Pd/C, H₂;

Experimental

General:THF was distilled first from LiAlH₄ and then over sodium wire under N₂. Reactions with organometallic compounds were run in flame-dried glassware under dry and **oxygen-free N₂**. TLC: Merck precoated silica gel 60 F-254 plates. Reaction compounds were visualized by iodine vapor. Column chromatography was performed on silic gel 60. M.p.: Büchi 510 apparatus, values uncorrected. $[a]_{D}^{\infty}$: Perkin-Elmer 241 polarimeter. IR-spectra: Perkin-Elmer 681. ¹H-NMR and ¹³C-NMR: Bruker AC 200.

3R,5S-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-4,5-dihydro-2(3H)-furanone (3a)

To a solution of LDA (21.05 mmol) in dry THF (50 ml) was added $2^{8,10a}$ (5.00g, 14.10 mmol) at -78° C. After 45 min the enolate was trapped with methyl iodide (3.58 ml, 56.40 mmol). After 15 min the reaction was quenched with sat. NH₄Cl solution and the mixture was extracted with ether (3x). After drying and evaporation of the solvent the yellow oil crystallized while standing overnight. Recrystallisation from MeOH furnished colorless crystals. Yield : 5.20 g (70%).- mp.: 75°C (MeOH).- $[\alpha]_D^{20}$: +37.7 (c=0.4, CHCl₃).- IR (KBr): 3060-2940, 1760, 1590, 1430, 1110 cm⁻¹.- 1H-NMR (CDCl₃): δ (ppm) = 1.04 (9H,s,t-bu), 1.29 (3H,d,CH₃, J_{Me,3} = 7.3 Hz), 1.96 (1H,td,H-4, J_{gem} = 12.8 Hz, J_{4,3cis} = 9.0 Hz, J_{4,5trans} = 9.0 Hz), 2.44 (1H,m,H-4, J_{gem} = 12.8 Hz, J_{4,3trans} = 9.5 Hz, J_{4,5cis} = 3.1 Hz), 2.85 (1H,m,H-3, J_{3,Me} = 7.3 Hz, J_{3,4trans} = 9.5 Hz, J_{3,4cis} = 9.0 Hz), 3.68 (1H,dd,H-6, J_{gem} = 11.3 Hz, J_{6,5} = 3.2 Hz), 3.87 (1H,dd,H-6, J_{gem} = 11.3 Hz, J_{6,5} = 3.4 Hz), 4.55 (1H,m,H-3, J_{5,4cis} = 3.1 Hz), 2.45 (1H,d,H-6, J_{gem} = 10.4), 7.43 (6H,m,H-arom.), 7.65 (4H,m,H-arom.).- ¹³C-NMR (CDCl₃): δ (ppm) = 16.3 CH₃, 19.0 <u>C</u>(CH₃), 26.7 C(<u>C</u>H₃), 32.1 C-4, 34.1 C-3, 65.5 C-6, 77.4 C-5, 127.7, 129.8, 132.4, 132.8, 135.4 C-arom., 180.1 C-2.- C₂₂H₂₈O₃Si (368.55) Calcd.: C 71.70 H 7.66 found: C 71.91 H 8.03.

3S,5R-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-4,5-dihydro-2(3H)-furanone (ent 3a)

From ent 2 in the same manner as described for 3a.

Yield: 5.27 g (71%).-. mp.: 73°C (MeOH).- $[\alpha]_{D}^{20}$: -37.1 (c=1.0, CHCl₃).- C₂₂H₂₈O₃Si (368.55) Calcd.: C 71.70 H 7.66 found: C 71.15 H 7.86.

3R,5S-5-Hydroxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (4a)

3a (5.00g, 13.57 mmol) was treated with a mixture of trifluoroacetic acid (50 ml) and water (50 ml) for 2h at room temperature. After evaporation of the volatiles, **4a** was isolated as a colorless oil by column chromatography (CHCl₃/MeOH 9:1). Yield: 1.34g (77%).- $[\alpha]_D^{20}$: +36.2 (c=0.3, EtOH).- IR (neat): 3400, 2980-2880, 1760, 1200 cm^{-1.-1}H-NMR (CDCl₃): δ (ppm)= 1.26 (3H,d,CH₃, J_{Me,3} = 7.3 Hz), 1.97 (2H,m,OH,H-4, J_{gem} = 12.9 Hz, J_{4,3cis} = 8.5 Hz, J_{4,5trans} = 8.5 Hz), 2.40 (1H,m,H-4, J_{gem} = 12.9 Hz, J_{4,3cis} = 3.8 Hz), 2.83 (1H,m,H-3, J_{3,Me} = 7.3 Hz), J_{3,4trans} = 9.4 Hz, J_{4,5cis} = 3.8 Hz), 2.83 (1H,m,H-3, J_{3,Me} = 7.3 Hz, J_{3,4trans} = 9.4 Hz, J_{3,4cis} = 8.5 Hz), 3.62 (1H,dd,H-6, J_{gem} = 12.3 Hz, J_{6,5} = 4.3 Hz), 3.82 (1H,dd,H-6, J_{gem} = 12.3 Hz, J_{6,5} = 3.3 Hz), 4.60 (1H,m,H-5, J_{5,6} = 4.3,3.3 Hz, J_{5,4cis} = 3.8 Hz, J_{5,4trans} = 8.5 Hz).- ¹³C-NMR (CDCl₃): δ (ppm) = 16.0 CH₃, 31.5 C-4, 34.3 C-3, 64.0 C-6, 78.6 C-5, 181.0 C-2 C₆H₁₀O₃ (130.14).- Calcd.: C 55.37 H 7.24 found: C 55.31 H 7.59.

3S,5R-5-Hydroxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 4a)

From ent 3a as described for 4a. Yield: 1.48g (85%).- $[\alpha]_D^{20}$: -35.7 (c \approx 0.3, EtOH).- C₆H₁₀O₃ (130.14) Calcd.: C 55.37 H 7.24 found: C 54.73 H 7.08.

3R,5S-5-Mesyloxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (5a)

4a (1.00g, 7.68 mmol) and triethylamine (1.17g, 8.45 mmol), were dissolved in dichloromethane (50 ml) and cooled to -30°C. To this solution mesylchloride (0.66 ml, 18.45 mmol) was added with stirring and

the mixture was gradually warmed to ambient temperature. After addition of 1N-HCl (20 ml) the organic phase was separated, and the aqueous layer was extracted with dichloromethane (2x). The combined organic extracts were washed with water (1x), dried and evaporated. The pale yellow oil crystallized after trituration with diisopropyl ether. Yield: 1.42g (89%).- mp.: 44°C (iPr₂O/EtOAc).- $[\alpha]_D^{20}$: +32.0 (c=0.2, EtOH).- IR (KBr): 3040-2940, 1770, 1350, 1170 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.31 (3H,d,CH₃, J_{Me,3} = 7.2 Hz), 2.10 (1H,td,H-4, J_{gem} = 13.2 Hz, J_{4,3Cis} = 8.6 Hz, J_{4,5trans} = 8.6 Hz), 2.41 (1H,m,H-4, J_{gem} = 13.2 Hz, J_{4,45cis} = 9.5 Hz, J_{4,5cis} = 4.0 Hz), 2.81 (1H,m,H-3, J_{3,Me} = 7.2 Hz, J_{3,4trans} = 9.5 Hz, J_{3,4cis} = 8.6 Hz), 3.08 (3H,s,CH₃-Mesyl), 4.30 (1H,dd,H-6, J_{gem} = 11.4 Hz, J_{6,5} = 4.3 Hz), 4.41 (1H,dd,H-6, J_{gem} = 11.4 Hz, J_{6,5} = 3.1 Hz), 4.77 (1H,m,H-5, J_{5,6} = 4.3,3.1 Hz, J_{5,4cis} = 4.0 Hz, J_{5,4trans} = 8.6 Hz).- C₇H₁₂O₅S (208.18) Calcd.: C 40.38 H 5.81found: C 40.46 H 6.12.

3S,5R-5-Mesyloxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 5a)

From ent 4a as described for 5a. Yield: 1.03g (65%).- mp.: 42°C (iPr₂O/EtOAc).- $[\alpha]_D^{20}$: -36.9 (c=0.2, EtOH).- C₇H₁₂O₅S (208.18) Calcd.: C 40.38 H 5.81found: C 40.22 H 5.91.

3R,5S-5-Azidomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (6a)

To a solution of **5a** (1.00g, 4.80 mmol) in acetonitrile (50 ml), sodium azide (474 mg, 7.20 mmol) and 15-crown-5 (100 mg) were added and refluxed for 16h. After evaporation of the solvent and column chromatography (CHCl₃/MeOH 9:1) **6a** was isolated as a colorless oil. Yield: 700 mg (94%).- $[\alpha]_{D}^{20}$: +94.2 (c=0.3, EtOH).- IR (neat): 2980-2880, 2110, 1770, 1290, 1170 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.30 (3H,d,CH₃, J_{Me,3} = 7.3 Hz), 2.04 (1H,td,H-4, J_{gem} = 13.2 Hz, J_{4,3cis} = 8.3 Hz), J_{4,5trans} = 8.3 Hz), 2.31 (1H,m,H-4, J_{gem} = 13.2 Hz, J_{4,3trans} = 9.4 Hz, J_{4,5cis} = 4.2 Hz), 2.81 (1H,m,H-3, J_{3,Me} = 7.3 Hz, J_{3,4trans} = 9.4 Hz, J_{3,4cis} = 8.3 Hz), 3.47 (1H,dd,H-6, J_{gem} = 12.7 Hz, J_{6,5} = 4.8 Hz), 3.60 (1H,dd,H-6, J_{gem} = 12.7 Hz, J_{6,5} = 3.9 Hz), 4.65 (1H,m,H-5, J_{5,6} = 4.8,3.9 Hz, J_{5,4cis} = 4.2 Hz, J_{5,4trans} = 8.3 Hz).- C₆H₉O₂N₃ (155.16) Calcd.: C 46.45 H 5.85 N 27.08 found: C 46.32 H 5.57 N 27.40.

3\$,5R-5-Azidomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 6a)

From ent 5a as described for 6a. Yield: 693 mg (93%).- $[\alpha]_{D}^{20}$: -95.6 (c=0.6, EtOH).- C₆H₉O₂N₃ (155.16) Calcd.: C 46.45 H 5.85 N 27.08 found: C 46.20 H 5.80 N 27.14.

3R,5S-5-(N-t-Butoxycarbonyl)aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (7a)

A solution of **6a** (500 mg, 3.22 mmol) and Boc₂O (775 mg, 3.55 mmol) in methanol (20 ml) was hydrogenated over Pd/C 10% (60 mg) for 2.5h at r.t. and 8 bar pressure. After filtration, evaporation of the solvent and column chromatography (CHCl₃/MeOH 9:1) **7a** was isolated as a colorless oil. Yield: 709 mg (96%).- $[\alpha]_D^{20}$: +35.9 (c=1.8, CHCl₃).- IR (neat): 3360, 2980, 2880, 1770, 1710, 1520, 1170 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm)= 1.28 (3H,d,CH₃, J_{Me,3}= 7.3 Hz), 1.45 (9H,s,t-Butyl), 1.98 (1H,td,H-4, J_{gem}= 13.1 Hz, J_{4,3cis}= 7.7 Hz, J_{4,5trans}= 7.7 Hz), 2.34 (1H,m,H-4, J_{gem}= 13.1 Hz, J_{4,3cis}= 3.9 Hz), 2.69 (1H,m,H-3, J_{3,Me}= 7.3 Hz, J_{3,4trans}= 8.2 Hz,

 $(1H,ddd,H-6, J_{gem} = 14.6 \text{ Hz}, J_{6,NH} = 7.1 \text{ Hz}, J_{6,5} = 3.7 \text{ Hz}), 4.62 (1H,m,H-5, J_{5,6} = 5.9,3.7 \text{ Hz}), J_{5,4cis} = 3.9 \text{ Hz}, J_{5,4trans} = 7.7 \text{ Hz}), 4.94 (1H,m,NH).- ¹³C-NMR (CDCl_3): \delta(ppm) = 16.1 CH_3, 28.3 C(\underline{C}H_3), 32.5 C-4, 34.1 C-3, 44.2 C-6, 77.3 C-5, 79.8 \underline{C}(CH_3), 156.1 C = 0-Boc, 179.7 C-2. C_{11}H_{19}O_4N (229.28) Calcd.: C 57.63 H 8.35 N 6.11 found: C 57.76 H 8.21 N 6.43.$

3S,5R-5-(N-t-Butoxycarbonyl)aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 7a)

From ent 6a as described for 7a. Yield: 532 mg (72%).- $[\alpha]_D^{20}$: -32.7 (c=0.8, CHCl₃).- C₁₁H₁₉O₄N (229.28) Calcd. C 57.63 H 8.35 N 6.11 found: C 57.59 H 8.43 N 6.12.

3R,5S-5-Aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone-hydrochloride (8a)

7a (450 mg 1.96 mmol) was stirred for 4h at r.t. in methanolic HCI (30 ml). The solvent was evaporated and the waxy residue was triturated with acetonitrile. Recrystallisation from CH₃CN/EtOH furnished **8a** as colorless plates. Yield: 243mg (75%).- mp.: 187°C (CH₃CN/EtOH).- $[\alpha]_D^{20}$: +81.0 (c=0.4, MeOH).- IR (KBr): 3000-2900, 1770, 1170 cm⁻¹.- ¹H-NMR (MeOD): δ (ppm)= 1.27 (3H,d,CH₃, J_{Me,3}= 7.3 Hz), 2.15 (1H,td,H-4, J_{gem}= 13.2 Hz, J_{4,3cis}= 8.2 Hz, J_{4,5trans}= 8.2 Hz), 2.31 (1H,m,H-4, J_{gem}= 13.2 Hz, J_{4,3trans}= 9.1 Hz, J_{4,5cis}= 4.5 Hz), 2.86 (1H,m,H-3, J_{3,Me}= 7.3 Hz, J_{3,4trans}= 9.1 Hz, J_{3,4cis}= 8.2 Hz), 3.22 (1H,dd,H-6, J_{gem}= 11.5 Hz, J_{6,5}= 2.7 Hz), 3.31 (1H,H-6, in CH₃-MeOD), 4.86 (1H,m,H-5, in OH-MeOD).- ¹H-NMR (DMSO-d₆): δ (ppm)= 1.14 (3H,d,CH₃, J_{Me,3}= 7.2 Hz), 2.04 (1H,td,H-4, J_{gem}= 13.1 Hz, J_{4,3cis}= 3.9 Hz), 2.79 (1H,m,H-3, J_{3,Me}= 7.2 Hz, J_{3,4trans}= 9.2 Hz, J_{3,4cis}= 8.5 Hz), 3.05 (1H,d,H-6, J_{6,5}= 1.4 Hz), 3.08 (1H,s,H-6), 4.76 (1H,m,H-5,J_{5,4trans}= 8.5 Hz, J_{5,4cis}= 3.9 Hz), J_{5,6}= 1.4 Hz). ¹³C-NMR (MeOD): δ (ppm)= 15.9 CH₃, 33.2 C-4, 34.8 C-3, 44.0 C-6, 76.2 C-5, 182.7 C-2.- ¹³C-NMR (DMSO-d₆): δ (ppm)= 15.2 CH₃, 31.8 C-4, 32.6 C-3, 42.0 C-6, 74.0 C-5, 179.0 C-2.- C₆H₁₂O₂NCI (165.62) Calcd.: C 43.51 H 7.30 N 8.46 found: C 43.32 H 7.58 N 8.34.

3S,5R-5-Aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone-hydrochloride (ent 8a)

From ent 7a as described for 8a. Yield: 227 mg (70%) mp.: 189°C (CH₃CN/EtOH).- $[\alpha]_{D}^{20}$: -81.1 (c=0.9, MeOH) C₆H₁₂O₂NCI (165.62) Calcd.: C 43.51 H 7.30 N 8.46 found: C 43.56 H 7.33 N 8.41.

2R,4S-5-Amino-4-hydroxy-2-methyl-pentanoic acid (9a)

8a (280 mg, 1.69 mmol) was dissolved in 0.5M-KOH (50 ml) at r.t. and stirred for 24h. The mixture was diluted with water (80 ml) and brought to a chromatographic column filled with 100 ml Dowex 50Wx2 (111 mval), which was thoroughly washed with water prior to use. The raisin was rinsed with water (300 ml) and the amino acid was eluated with 0.5M-NH₄OH (250 ml). After evaporation of the solvent the residue was freeze-dried. Trituration and recrystallisation with acetonitrile/ethanol furnished a colorless powder. Yield: 120 mg (49%).- mp.: 171 °C (CH₃CN/EtOH).- $[\alpha]_D^{20}$: -13.5 (c=0.3, H₂O).- IR (KBr): 3060, 2960-2880, 1640, 1590, 1540, 1400 cm⁻¹.- ¹H-NMR (MeOD/D₂O): δ (ppm) = 1.22 (3H,d,CH₃, J_{Me,2} = 7.0 Hz), 1.47 (1H,ddd,H-3, J_{gem} = 13.9 Hz, J_{3,2} = 3.9 Hz, J_{3,4} = 9.1 Hz), 1.78

(1H,ddd,H-3, $J_{gem} = 13.9$ Hz, $J_{3,2} = 10.2$ Hz, $J_{3,4} = 4.0$ Hz), 2.62 (1H,m,H-2, $J_{2,Me} = 7.0$ Hz, $J_{2,3} = 3.9,10.2$ Hz), 2.76 (1H,dd,H-5, $J_{gem} = 12.8$ Hz, $J_{5,4} = 9.1$ Hz), 3.00 (1H,dd,H-5, $J_{gem} = 12.8$ Hz, $J_{5,4} = 3.3$ Hz), 3.81 (1H,m,H-4, $J_{4,3} = 4.0,9.1$ Hz, $J_{4,5} = 3.3,9.1$ Hz). ^{13}C -NMR (MeOD/D₂O): $\delta(ppm) = 19.2$ CH₃, 39.0 C-3, 40.1 C-2, 46.2 C-5, 67.3 C-4, 182.8 C-1.- MS (CI): m/z = 148 [M+H⁺, 6.6%], 130 [M+H⁺ -H₂O, 100%], 112 [M+H⁺ -2H₂O, 50.4%].- C₆H₁₃O₃N (147.17) Calcd.: C 48.97 H 8.84 N 9.45 found: C 47.79 H 8.88 N 9.34.

2S,4R-5-Amino-4-hydroxy-2-methyl-pentanoic acid (ent 9a)

From ent 8a as described for 9a. Yield: 68 mg (47%).- mp.: 173°C (CH₃CN/EtOH).- $[\alpha]_D^{20}$: +12.8 (c=0.2, H₂O).- C₆H₁₃O₃N (147.17) Calcd.: C 48.97 H 8.84 N 9.45 found: C 47.00 H 8.26 N 8.70.

5S,3R-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-3-phenylseleno-4,5-dihydro-2(3H)-furanone (10)

To a solution of LDA (18.26 mmol) in THF (70 ml) at -78°C was added **3a** (4.50 g, 12.21 mmol). After 45 min the enolate was treated with a solution of phenylselenenyl chloride (2.57 g, 13.43 mmol) in THF (30 ml). After 90 min the reaction was quenched with sat. NH₄Cl-solution. Extractive isolation and column chromatography (petroleum ether/EtOAc 9:1) afforded a yellow viscous oil. Yield: 4.41 g (69%).- $[\alpha]_D^{20}$: +17.6 (c=0.3, CHCl₃).- IR (KBr): 3070, 2960-2860, 1770, 1430, 1115 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.03 (9H,s,t-Butyl), 1.64 (3H,s,CH₃), 2.34 (1H,d,H-4, J_{4,5cis}= 2.5 Hz), 2.37 (1H,m,H-4, J_{4,5trans} = 4.8 Hz), 3.65 (1H,dd,H-6, J_{gem} = 11.5 Hz, J_{6,5} = 3.8 Hz), 3.84 (1H,dd,H-6, J_{gem} = 11.5 Hz, J_{6,5} = 3.4 Hz), 4.38 (1H,m,H-5, J_{5,6} = 3.8,3.4 Hz, J_{5,4cis} = 2.5 Hz, J_{5,4trans} = 4.8 Hz), 7.41 (9H,m,H-arom.), 7.65 (6H,m,H-arom.).- C₂₈H₃₂O₃SiSe (523.61) Calcd.: C 64.23 H 6.16 found: C 63.99 H 6.25.

5R,3S-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-3-phenylseleno-4,5-dihydro-2(3H)-furanone (ent 10)

From ent 3a as described for 10. Yield: 4.92 g (77%).- $[\alpha]_D^{\infty}$: -16.6 (c = 2.0, CHCl₃).- C₂₈H₃₂O₃SiSe (523.61) Calcd.: C 64.23 H 6.16 found: C 64.43 H 6.42.

5S-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-2(5H)-furanone (11)

To a stirred solution of **10** (3.10 g, 5.92 mmol) in CH₂Cl₂ (50 ml) and pyridine (0.4 ml) at 0°C was added a mixture of H₂O₂ (2.1 ml) and H₂O (2.1 ml). After 1h at r.t. sat. Na₂CO₃-solution was added and the organic layer was extracted with 2M-HCl and H₂O. Drying and evaporation of the organic phase afforded a colorless powder, which was pure enough for the next reaction step. Analytical pure material was isolated by column chromatography (petroleum ether/EtOAc 8:2). Yield: 1.65 g (76%).- mp.: 63° C.- $[\alpha]_{D}^{20}$: +68.8 (c=0.5, CHCl₃).-.IR (KBr): 3080-3040, 2960-2860, 1760, 1470, 1430, 1115 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.06 (9H,s,t-Butyl), 1.92 (3H,t,CH₃, J_{Me},4 = 1.7 Hz, J_{Me},5 = 1.7 Hz), 3.84 (2H,d,H-6, J_{6,5} = 4.6 Hz), 4.92 (1H,m,H-5, J_{5,Me} = 1.7 Hz, J_{5,6} = 4.6 Hz, J_{5,4} = 3.1 Hz), 6.95 (1H,m,H-4, J_{4,Me} = 1.7 Hz, J_{4,5} = 3.1 Hz), 7.42 (6H,m,H-arom.), 7.63 (4H,m,H-arom.).-C₂₂H₂₆O₃Si (366.53) Calcd.: C 72.09 H 7.15 found: C 72.37 H 7.04.

5R-5-(t-Butyldiphenyisiloxymethyl)-3-methyl-2(5H)- furanone (ent 11)

From ent 10 as described for 11. Yield: 1.76 g (81%).- mp.: 64° C.- $[\alpha]_{D}^{20}$: -71.2 (c=0.1, CHCl₃).- C₂₂H₂₆O₃Si (366.53) Calcd.: C 72.09 H 7.15 found: C 72.16 H 7.29.

3\$,5\$-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-4,5-dihydro-2(3H)- furanone (3b)

11 (1.20 g, 3.27 mmol) was dissolved in EtOAc (20 ml) and hydrogenated over Pd/C 20% (120 mg) at r.t.and 10 bar for 5h. After "filtration" over silica gel and evaporation of the solvent **3b** was isolated as colorless crystals. Yield: 1.18 g (98%).- mp.: 84°C (MeOH).- $[\alpha]_D^{20}$: +13.9 (c=0.6, CHCl₃).- IR (KBr) : 3080-3040, 2980-2860, 1770, 1430, 1130-1110 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm)= 1.06 (9H,s,t-Butyl), 1.29 (3H,d,CH₃, J_{Me,3}= 7.0 Hz), 1.85 (1H,td,H-4, J_{gem}= 12.3 Hz, J_{4,3trans}= 11.9 Hz, J_{4,5trans}= 11.9 Hz), 2.39 (1H,m,H-4, J_{gem}= 12.3 Hz, J_{4,3cis}= 6.3 Hz), 3.69 (1H,dd,H-6, J_{gem}= 11.4 Hz, J_{6,5}= 4.3 Hz), 3.86 (1H,dd,H-6, J_{gem}= 11.4 Hz, J_{6,5}= 3.6 Hz), 4.54 (1H,m,H-5, J_{5,6}= 4.3,3.6 Hz, J_{5,4cis}= 3.4 Hz, J_{5,4trans}= 11.9 Hz), 7.40 (6H,m,H-arom.), 7.65 (4H,m,H-arom.).- ¹³C-NMR (CDCl₃): δ (ppm)= 15.4 CH₃, 19.2 <u>C</u>(CH₃), 26.7 C(<u>C</u>H₃), 32.1 C-4, 35.4 C-3, 64.6 C-6, 78.1 C-5, 127.8, 129.8, 132.5, 132.9, 135.5 C-arom., 179.3 C-2.- C₂₂H₂₈O₃Si (368.55) Calcd.: C 71.70 H 7.66 found: C 71.97 H 7.76.

3R,5R-5-(t-Butyldiphenylsiloxymethyl)-3-methyl-4,5-dihydro-2(3H)-furanone (ent 3b)

From ent 11 as described for 3b. Yield: 1.19 g (99%).- mp.: 85 °C (MeOH).- $[\alpha]_D^{20}$: -13.8 (c=0.4, CHCl₃).- C₂₂H₂₈O₃Si (368.55) Calcd.: C 71.70 H 7.66 found: C 71.93 H 7.73.

3S,5S-5-Hydroxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (4b)

3b (1.26 g, 3.42 mmol) was treated in the same manner as described for **3a**. Yield: 400 mg (90%). $[\alpha]_{D}^{20}$: +22.5 (c=0.3, EtOH).- IR (neat): 3440, 2980-2880, 1760, 1455, 1200-1170 cm⁻¹.- ¹H-NMR (CDCI₃): δ (ppm)= 1.28 (3H,d,CH₃, J_{Me,3}= 7.1 Hz), 1.78 (1H,td,H-4, J_{gem}= 12.3 Hz, J_{4,3trans}= 11.8 Hz, J_{4,5trans}= 11.8 Hz), 2.38 (1H,ddd,H-4, J_{gem}= 12.3 Hz, J_{4,3cis}= 6.4 Hz, J_{4,5cis}= 3.5 Hz), 2.74 (1H,m,H-3, J_{3,Me}= 7.1 Hz, J_{3,4trans}= 11.8 Hz, J_{3,4cis}= 6.4 Hz), 3.63 (1H,dd,H-6, J_{gem}= 12.7 Hz, J_{6,5}= 5.0 Hz), 3.91 (1H,dd,H-6, J_{gem}= 12.7 Hz, J_{6,5}= 2.6 Hz), 3.75 (1H,s,OH), 4.51 (1H,m,H-5, J_{5,6}= 5.0,2.6 Hz, J_{5,4cis}= 3.5 Hz, J_{5,4trans}= 11.8 Hz).- C₆H₁₀O₃ (368.55) Calcd.: C 55.37 H 7.24 found: C 55.30 H 7.55.

3R,5R-5-Hydroxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 4b)

From ent 3b as described for 4b. Yield: 404 mg (91%).- [α]²⁰_D: -25.2 (c=0.3, EtOH).- C₆H₁₀O₃ (368.55) Calcd.: C 55.37 H 7.24 found: C 54.89 H 6.98.

3S,5S-5-Mesyloxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (5b)

4b (350 mg, 2.69 mmol) was treated with Et₃N (0.41 ml, 2.96 mmol) and mesyl chloride (0.23 ml, 2.96 mmol) in CH₂Cl₂ (30 ml) as described for 5a. Yield: 381 mg (68%).- mp.: 84°C (EtOAc).- $[\alpha]_D^{20}$: +29.4 (c=0.2, EtOH).- IR (KBr): 3030-2880, 1760, 1350, 1170 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.32 (3H,d,CH₃, J_{Me.3} = 7.0 Hz), 1.75 (1H,td,H-4, J_{aem} = 12.6 Hz, J_{4.3trans} = 11.5 Hz,

 $\begin{array}{l} J_{4,5trans} = \ 11.5 \ \text{Hz}, \ 2.53 \ (1\text{H},\text{dd},\text{H-4}, \ J_{gem} = \ 12.6 \ \text{Hz}, \ J_{4,3cis} = \ 6.4 \ \text{Hz}, \ J_{4,5cis} = \ 3.6 \ \text{Hz}), \ 2.74 \\ (1\text{H},\text{m},\text{H-3}, \ J_{3,\text{Me}} = \ 7.0 \ \text{Hz}, \ J_{3,4trans} = \ 11.5 \ \text{Hz}, \ J_{3,4cis} = \ 6.4 \ \text{Hz}), \ 3.09 \ (3\text{H},\text{s},\text{CH}_3\text{-Mesyl}), \ 4.28 \\ (1\text{H},\text{dd},\text{H-6}, \ J_{gem} = \ 11.7 \ \text{Hz}, \ J_{6,5} = \ 5.5 \ \text{Hz}), \ 4.46 \ (1\text{H},\text{dd},\text{H-6}, \ J_{gem} = \ 11.7 \ \text{Hz}, \ J_{6,5} = \ 2.9 \ \text{Hz}), \ 4.65 \\ (1\text{H},\text{m},\text{H-5}, \ J_{5,6} = \ 5.5,2.9 \ \text{Hz}, \ J_{5,4cis} = \ 3.6 \ \text{Hz}, \ J_{5,4trans} = \ 11.5 \ \text{Hz}). - \ C_7\text{H}_{12}O_5S \ (208.18) \ \text{Calcd.}: \\ C \ 40.38 \ \text{H} \ 5.81 \ \text{found:} C \ 40.65 \ \text{H} \ 5.86. \end{array}$

3R,5R-5-Mesyloxymethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 5b)

From ent 4b as decribed for 5b. Yield: 398 mg (71%).- mp.: 84°C (EtOAc).- $[\alpha]_D^{20}$: -29.9 (c=0.3, EtOH).- C₇H₁₂O₅S (208.18) Calcd.: C 40.38 H 5.81 found: C 40.30 H 5.91.

3S,5S-5-Azidomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (6b)

5b (200 mg, 0.96 mmol) was treated in acetonitrile (20 ml) with sodium azide (95 mg, 1.46 mmol) and 15-Crown-5 (20 mg) as described for **6a**. Yield: 139 mg (93%).- $[\alpha]_D^{20}$: +98.4 (c = 0.3, EtOH).- IR (KBr): 2980-2880, 2100, 1770, 1450 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.30 (3H,d,CH₃, J_{Me,3} = 7.0 Hz), 1.72 (1H,td,H-4, J_{gem} = 12.3 Hz, J_{4,3trans} = 11.9 Hz, J_{4,5trans} = 11.9 Hz), 2.48 (1H,ddd,H-4, J_{gem} = 12.3 Hz, J_{4,3cis} = 6.6 Hz, J_{4,5cis} = 3.6 Hz), 2.72 (1H,m,H-3, J_{3,Me} = 7.0 Hz, J_{3,4trans} = 11.9 Hz, J_{3,4cis} = 6.6 Hz), 3.44 (1H,dd,H-6, J_{gem} = 13.4 Hz, J_{6,5} = 5.5 Hz), 3.61 (1H,dd,H-6, J_{gem} = 13.4 Hz, J_{6,5} = 3.6 Hz), 4.54 (1H,m,H-5, J_{5,6} = 5.5,3.6 Hz, J_{5,4cis} = 3.6 Hz, J_{5,4trans} = 11.9 Hz).- ¹³C-NMR (CDCl₃): δ (ppm) = 15.1 CH₃, 34.9 C-4, 36.5 C-3, 44.3 C-6, 75.8 C-5, 180.5 C-2.- C₆HgO₃N₃ (155.16) Calcd.: C 46.45 H 5.85 N 27.08 found: C 46.51 H 5.65 N 27.09.

3R,5R-5-Azidomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 6b)

From ent 5b as described for 6a. Yield: 87%.- $[\alpha]_D^{20}$: -97.8 (c=0.4/EtOH).- C₆H₉O₃N₃ (155.16) Calcd.: C 46.45 H 5.85 N 27.08 found: C 47.12 H 5.78 N 27.95.

3S.5S-5-(N-t-Butoxycarbonyl)aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (7b)

From **6b** (300 mg, 1.93 mmol), Boc₂O (465 mg, 2.13 mmol) and Pd/C 10% (40 mg) as described for **7a**. Yield: 332 mg (75%).- [α]_D²⁰: +20.1 (c=0.3, CHCl₃).- IR (KBr) : 3380, 2980-2880, 1760, 1710, 1510, 1170 cm⁻¹.- ¹H-NMR (CDCl₃): δ (ppm) = 1.28 (3H,d,CH₃, J_{Me,3} = 7.2 Hz), 1.46 (9H,s,t-Butyl), 1.58 (1H,td,H-4, J_{gem} = 12.5 Hz, J_{4,3trans} = 12.0 Hz, J_{4,5trans} = 12.0 Hz), 2.46 (1H,ddd,H-4, J_{gem} = 12.5 Hz, J_{4,3cis} = 8.8 Hz, J_{4,5cis} = 5.7 Hz), 2.69 (1H,m,H-3, J_{3,Me} = 7.2 Hz, J_{3,4trans} = 12.0 Hz, J_{3,4cis} = 8.8 Hz), 3.23 (1H,td,H-6, J_{gem} = 14.7 Hz, J_{6,5} = 6.2 Hz, J_{6,NH} = 6.2 Hz), 3.56 (1H,ddd,H-6, J_{gem} = 14.7 Hz, J_{6,5} = 2.8 Hz), 4.48 (1H,m,H-5, J_{5,6} = 6.2,6.2 Hz, J_{5,4cis} = 5.7 Hz), J_{5,4trans} = 12.0 Hz), 4.93 (1H,s,NH).- C₁₁H₁₉O₄N (229.28) Calcd.: C 57.63 H 8.35 N 6.11 found: C 57.72 H 8.51 N 5.95.

3R,5R-5-(N-t-Butoxycarbonyl)aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone (ent 7b)

From ent 6b as described for 7a. Yield: 434 mg (98%).- $[\alpha]_D^{20}$: -19.7 (c=0.4, CHCl₃).- C₁₁H₁₉O₄N (229.28) Calcd.: C 57.63 H 8.35 N 6.11found: C 57.34 H 8.62 N 5.92.

3S,5S-5-Aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone-hydrochloride (8b)

From **7b** as described for **8a**. Yield: 234 mg (72%).- mp.: 202°C (CH₃CN/EtOH).- $\{\alpha\}_{D}^{20}$: +54.4 (c=0.4, MeOH).- IR (KBr): 3160, 2700, 2030, 1760, 1610, 1200 cm⁻¹.- ¹H-NMR (MeOD): δ (ppm)= 1.25 (3H,d,CH₃, J_{Me,3}= 7.0 Hz), 1.65 (1H,td,H-4, J_{gem}= 12.4 Hz, J_{4,3trans}= 12.1 Hz, J_{4,5trans}= 12.1 Hz), 2.61 (1H,ddd,H-4, J_{gem}= 12.4 Hz, J_{4,3cis}= 6.7 Hz, J_{4,5cis}= 3.7 Hz), 2.90 (1H,m,H-3, J_{3,Me}= 7.0 Hz, J_{3,4trans}= 12.1 Hz, J_{3,4cis}= 6.7 Hz), 3.13 (1H,dd,H-6, J_{gem}= 13.7 Hz, J_{6,5}= 8.8 Hz), 3.35 (1H,dd,H-6, J_{gem}= 13.7 Hz, J_{6,5}= 2.9 Hz), 4.69 (1H,m,H-5, J_{5,6}= 2.9,8.8 Hz, J_{5,4cis}= 3.7 Hz).- ¹³C-NMR (MeOD): δ (ppm)= 15.1 CH3, 34.9 C-4, 36.5 C-3, 44.3 C-6, 75.8 C-5, 180.5 C-2..- C₆H₁₂O₂NCI (165.62) Calcd.: C 43.51 H 7.30 N 8.46 found: C 43.20 H 7.25 N 8.61.

3R,5R-5-Aminomethyl-3-methyl-4,5-dihydro-2(3H)-furanone-hydrochloride (ent 8b)

From ent 7b as described 8a. Yield: 244 mg (75%).- mp.: 201°C (CH₃CN/Aceton).- [α]²⁰_D: -58.7 (c=0.2, MeOH).- C₆H₁₂O₂NCI (165.62) Calcd.: C 43.51 H 7.30 N 8.46 found: C 43.40 H 7.40 N 8.72.

2S,4S-5-Amino-4-hydroxy-2-methyl-pentanoic acid (9b)

8b (150 mg, 0.91 mmol) was treated in the same manner as described for **9a**. Yield: 65 mg (49%).mp.: 162°C (CH₃CN/MeOH).- $[\alpha]_D^{20}$: +19.4 (c=0.3, H₂O).- IR (KBr): 3120, 2960, 1570, 1460, 1390, 1080 cm⁻¹.- ¹H-NMR (MeOD/D₂O): δ (ppm)= 1.11 (3H,d,CH₃, J_{Me,2}= 6.9 Hz), 1.50 (1H,td,H-3, J_{gem}= 14.0 Hz, J_{3,2}= 5.7 Hz, J_{3,4}= 5.7 Hz), 1.82 (1H,td,H-3, J_{gem}= 14.0 Hz, J_{3,2}= 7.8 Hz, J_{3,4}= 7.8 Hz), 2.39 (1H,m,H-2, J_{2,Me}= 6.9 Hz, J_{2,3}= 5.7, 7.8 Hz), 2.84 (1H,dd,H-5, J_{gem}= 13.0 Hz, J_{5,4}= 9.3 Hz), 3.12 (1H,dd,H-5,J_{gem}= 13.0 Hz, J_{5,4}= 3.1 Hz), 3.65 (1H,m,H-4, J_{4,3}= 5.7,7.8 Hz, J_{4,5}= 3.1,9.8 Hz).- ¹³C-NMR (MeOD/D₂O): δ (ppm)= 18.6 CH₃, 39.9 C-3, 40.0 C-2, 45.7 C-5, 67.3 C-4, 185.5 C-1.- MS (FAB): m/z= 148 [M+H⁺, 47.4%], 240 [M+H⁺ + Glycerin, 5.1%].-C₆H₁₃O₃N (147.17) Calcd.: C 48.97 H 8.84 N 9.45 found: C 48.72 H 8.55 N 9.38.

2R,4R-5-Amino-4-hydroxy-2-methyl-pentanolc acid (ent 9b)

From **ent 8b** as described **9b**. Yield: 92 mg (69%).- mp.: 158-162°C (CH₃CN/MeOH).- $[\alpha I_D^{20}: -16.8]$ (c=0.4, H₂O).- C₆H₁₃O₃N (147.17) Calcd.: C 48.97 H 8.84 N 9.45 found: C 46.85 H 8.45 N 9.30.

Acknowledgement: We thank the DFG (Deutsche Forschungsgemeinschaft) for financial support (He 1513/2-3), the Fonds der Chemischen Industrie for generous grant and Degussa AG Hanau for D-glutamic acid. Dr. O. Seligmann, Institut für Pharmazeutische Biologie der Universität München provided valuable mass spectroscopic measurments. Mrs. A. Betz, University of Würzburg, is thanked for preparation of starting materials.

References and Notes

1, a) Part II: C. Herdeis and D. Waibel, Arch. Pharm. (Weinheim) **1991**, 324, 269-274. b) U. Kristiansen, A. Hedegaard, C. Herdeis, T. M. Lund, B. Nielsen, J. J. Hansen, E. Falch and P. Krogsgaard-Larsen, J. Neurochem. **1992**, 58, 1150-1159.

2. a) W. Ziegelgänsberger and M. Hausser in GABA: Basic Research and Clinic Applications, Ed. G. Nisticò and N. G. Bowery, Pythagora Press, Rome-Milan **1989** 59-101. b) P. Krogsgaard-Larsen, H. Hjelds, E. Falch, F. S. Jørgensen and L. Nielsen, Adv. Drug Res. **1989**, 17, 382-445.

3. Chiral pool synthesis of R(-) Baclofen: C. Herdeis and H. P. Hubmann, Tetrahedron: Asymmetry, 1992, 3, 1213-1221.

4. R. H. Prager, D. I. B. Kerr, J. Chiefari, S. Galanopoulos and W. K. Janowski, Aust. J. Chem. **1987**, 40, 1511-1518. A. J. Cross, I. N. Robinson, A. R. Green, J. M. Toczek and B. R. Boar, Br. J. Pharmacol. **1989**, 98, 833-840. R. G. Hall, Synthesis **1989**, 6, 442-443. D. I. B. Kerr, J. Ong, R. H. Prager, B. D. Gynther and D. R. Curtis, Brain Research, **1987**, 405, 150-154.

5, D. I. B. Kerr, J. Ong, A. R. Johnston, J. Abbenante and R. H. Prager, Neurosci. Lett. 1988, 92, 92-96.

H. R. Olpe, G. Karlsson, M. F. Pozza, F. Brugger, M. Steinmann, H. van Riezen, G. Fagg, R. G. Hall,
 W. Froestl and H. Bittiger, Eur. J. Pharmacol. 1990, 187, 27-38. P. C. Waldmeier, Naunyn-Schmiedeberg's Arch. Pharmacol. 1991, 343, 173-178.

7. T. Klockgether U. Wüllner, M. Schwarz and K.-H. Sontag, Brain Research, 1987, 422, 129-139. M. Schwarz, T. Klockgether, U. Wüllner, L. Turski and K.-H. Sontag, Exp. Brain Res. 1988, 70, 618-626.
8. C. Herdeis, Synthesis 1986, 3, 232-233.

9. The enantiomeric excess of **S-1** (**R-1**), **4a** (ent-**4a**), **4b** (ent-**4b**) was determined by GC on a Lipodex D (25mx0.25 mm) column (Macherey and Nagel). The e.e. values were greater than 98%. The $[\alpha]_{\rm p}^{20}$ values of **S-1** (**R-1**) differ considerably in the literature¹⁰. Accuracy should be applied to the nitrosation of S(R)-glutamic acid¹⁰. The (S)-5-oxo-tetrahydrofurane-2-carboxylic acid must be crystallized⁸ ($[\alpha]_{\rm p}^{20} = +15.8-16.0$ (c = 2,EtOH). The Organic Synthesis procedure (**1985**, 63, 121-126) is not recommended by us.

a) S. Hanessian and P. J. Murray, Tetrahedron, 1987, 43, 5055-5072. b) see ref. 8. c) R. M. Silverstein, U. Ravid and L. R. Smith, Tetrahedron, 1978, 34, 1449-1452.. d) J. C. Harmange, B. Frigadère and R. Hocqumiller, Tetrahedron: Asymmetry, 1991, 2, 347-350. e) J. P. Vigneron, R. Méric, M. Larchevêque, A. Debal, J. Y. Lallemand, G. Kunesch, P. Zagetti and M. Gallois, Tetrahedron, 1984, 40, 3521-3529.

11. a) K. Tomioka, Y.-S. Cho, F. Sato, and K. Koga, J. Org. Chem. **1988**, 53, 4094-4098. b) S. Hanessian, P. J. Murray, S. P. Sahoo, Tetrahedron Lett. **1985**, 26, 5623-5626.

12. Private communication from P. Krogsgaard-Larsen.